添加URL
分享
COVID-19 is an emerging, rapidly evolving situation.
Get the latest public health information from CDC: https://www.coronavirus.gov .
Get the latest research from NIH: https://www.nih.gov/coronavirus .
Find NCBI SARS-CoV-2 literature, sequence, and clinical content: https://www.ncbi.nlm.nih.gov/sars-cov-2/ .
National Institutes of Health
National Library of Medicine
National Center for Biotechnology Information
NCBI homepage Show account info We investigated the effects of retinoids on the cholinergic properties of a murine septal cell line, SN56. Treatment of the cells with all-trans-retinol (vitamin A), all-trans-retinal, all-trans-retinoic acid (t-RA), 9-cis-retinoic acid (9c-RA), or 13-cis-retinoic acid caused time- and concentration-dependent increases in choline acetyltransferase activity (up to 3.4-fold) and in intracellular acetylcholine levels (up to 2.5-fold, with respective EC50 values of 68, 50, 18, 15, and 56 nM). Furthermore, treatment with either t-RA or 9c-RA at 1 microM for 48 h resulted in an increase in the expression of choline acetyltransferase mRNA by threefold that of controls. These data and the presence of putative retinoic acid response elements in the 5' region of the murine choline acetyltransferase gene indicate that retinoids stimulate choline acetyltransferase transcription in murine cholinergic neurons. No additivity or synergism was observed between the effects of t-RA and 9c-RA on any of these cholinergic properties of SN56 cells, suggesting a common mechanism of action of the two retinoids. However, a combined treatment with t-RA and forskolin, which activates adenylate cyclase, resulted in an additive increase in acetylcholine content. Using an antagonist selective for the retinoic acid receptor-alpha subtype, Ro 41-5253, we found that the effects of t-RA and 9c-RA on acetylcholine levels were abolished. An agonist selective for retinoic acid receptor-alpha, Ro 40-6055, increased acetylcholine levels to a similar extent as t-RA and 9c-RA, and this effect was blocked by the antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) Berse B, Blusztajn JK. Berse B, et al. J Biol Chem. 1995 Sep 22;270(38):22101-4. doi: 10.1074/jbc.270.38.22101. J Biol Chem. 1995. PMID: 7673184 Malik MA, Greenwood CE, Blusztajn JK, Berse B. Malik MA, et al. Brain Res. 2000 Aug 25;874(2):178-85. doi: 10.1016/s0006-8993(00)02575-0. Brain Res. 2000. PMID: 10960602 Jankowska A, Blusztajn JK, Szutowicz A. Jankowska A, et al. Folia Neuropathol. 1997;35(4):247-9. Folia Neuropathol. 1997. PMID: 9833404 Personett D, Fass U, Panickar K, McKinney M. Personett D, et al. J Neurochem. 2000 Jun;74(6):2412-24. doi: 10.1046/j.1471-4159.2000.0742412.x. J Neurochem. 2000. PMID: 10820202 Fisher A, Hanin I. Fisher A, et al. Life Sci. 1980 Nov 3;27(18):1615-34. doi: 10.1016/0024-3205(80)90635-9. Life Sci. 1980. PMID: 7003285 Review. No abstract available. Chakrabarti M, McDonald AJ, Will Reed J, Moss MA, Das BC, Ray SK. Chakrabarti M, et al. J Alzheimers Dis. 2016;50(2):335-52. doi: 10.3233/JAD-150450. J Alzheimers Dis. 2016. PMID: 26682679 Free PMC article. Review. Lee HP, Casadesus G, Zhu X, Lee HG, Perry G, Smith MA, Gustaw-Rothenberg K, Lerner A. Lee HP, et al. Expert Rev Neurother. 2009 Nov;9(11):1615-21. doi: 10.1586/ern.09.86. Expert Rev Neurother. 2009. PMID: 19903021 Free PMC article. Review. Shudo K, Fukasawa H, Nakagomi M, Yamagata N. Shudo K, et al. Curr Alzheimer Res. 2009 Jun;6(3):302-11. doi: 10.2174/156720509788486581. Curr Alzheimer Res. 2009. PMID: 19519313 Free PMC article. Review. Dmetrichuk JM, Carlone RL, Jones TR, Vesprini ND, Spencer GE. Dmetrichuk JM, et al. J Neurosci. 2008 Nov 26;28(48):13014-24. doi: 10.1523/JNEUROSCI.3192-08.2008. J Neurosci. 2008. PMID: 19036995 Free PMC article. Schnitzler AC, Lopez-Coviella I, Blusztajn JK. Schnitzler AC, et al. Brain Res. 2008 Dec 30;1246:19-28. doi: 10.1016/j.brainres.2008.09.085. Epub 2008 Oct 14. Brain Res. 2008. PMID: 18952073 Free PMC article.